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EXACT SOLUTIONS OF THE NON-LINEAR WAVE EQUATIONS ARISING IN MECHANICS* 

N.A. KUDRYASHOV 

Solitary and cnoidal waves solving three equations commonly used to 
describe wave processes in mechanics - the Burgers-Korteweg-de Vries, 
Kuramoto-Sivashinsky and Kawahara equations - are obtained by analytical 
means. 

Weiss, Tabor and Carnevale proposed an effective method of determining the Backlund trans- 
formation and Lax pair for non-linear partial differential equations which are integrable by 
the inverse scattering method (ISM). The essence of the method is to expand the solution of 
the original equation in the neighbourhood of the singular manifold. For example, in the case 
of the Korteweg-de Vries (KdV) equation 

which describes non-linear waves in a dispersive medium, one represents the solution in the 
form 

u = U,r'F2 -t q/F + u1 

substitutes this into(0.1) and then equates the coefficients of like powers of F(z,t) to zero; 
this yields the B&zklund transformation for the solutions of the KdV equation. The result is 
a much simpler approach to the solution of this equation. 

It will be shown below that a similar method can be used to determine exact solutions for 
several non-linear equations which occur in mechanics and physics and are not integrable by 
the ISM. 

7. Burgers-Kortmeg-de Vries (BKdV) equatkm. This equation generalizes the KdV equation 
to take into account dissipative processes in wave propagation in shallow water /2/, in a liquid 
with gas bubbles /3/, in plasma /4/, etc. It differs from Eq.(O.l) in the additional term 
va%L/ax2 on the right. It has been shown /5, 61 that the solution of this equation can be 
expressed in the form 

u (5, t) = lZp@ In F/8x2 - 12~158 In F/&z + ug (1.1) 

Using (l.l), we find exact solutions of the BKdV equation. We shall look for a solution 
in the travelling-wave coordinate system U(I, t)= u(E), 5 = z - c,t (where c,, is the velocity 
of the wave). The BKdV equation in this case may be written in the form 

BUEI' - vUE' + 1/,U2 - ~$7 + q = 0, q = const (1.2) 

Eq.(1.2), which describes a non-linear oscillator with damping due to friction forces, is 
a popular model in oscillation theory. Substituting into it the transform of the solution 
(l.l), i.e., 

u = c, -i_ lagezR(e), R(U)= * ( ,2$?x,(+) 

we get 

&R"+6R2+$(C1- c,-~)Re-e + &(*- COCl + q3-4 c 0 (IA) 

This equation is convenient for approximate solution of the BKdV equation, but it can also 
be used to find exact solutions if q and C, are chosen that the expressions in parentheses in 
(1.3) vanish. In that case, multiplying both sides of Eq.(1.3) by Rep and integrating with 
respect to 8, we obtain the equation 
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R’” + 1oopv-2 (R3 + C,) = 0 (1.4) 

The solution of the BKdV equation obtained through (1.4) can be expressed in terms of the 
Weierstrass function: 

If C, = 0 the solution of (1.5) takes the form of a wave front /6/: 

E=exp(kz+wt), k==-t_-$- 

6~3 
(~)=-Gk+~ 

2. The Kumnwto-Siuashinsky equution. Another formal generalization of the KdV equation 
is the Kuramoto-Sivashinsky equation, which describes non-linear waves in dissipative-dispersive 
media with instability: waves occurring in thin liquid films flowing down inclined planes 17, 
B/, drift waves of an electrostatic potential in toroidal systems 191, the concentration of 
material in chemical reactions /lo, ll/, etc. The equation is 

It has been shown /5, 6/ that the solution of Eq.(2.1) can be expressed as 

(2.2) 

This transformation may be used to find analytical solutions. In particular, if a = y = 
2., $=4, nr=C,=const, substituting 

u (5, t) = u (%), % = x - cot (2.3) 

U (5) = C, + R + R,‘, R = 60d2 In FldP 

into Eq.jZ.11, written in the travelling-wave coordinate system as 

we obtain the equation 

ZEe” + 5Zt’ -+- (5 - A) Z - ‘l,RZ -+ 3/6 1 ZRE’d% = 0 

Here 

z = REE,” + RZJ1O -i- AR - 51, (1 - AZ), A = (cl _ c0 + i),s 

(2.5) 

(2.6) 
It follows from (2.5) and (2.61 that every solution of the equation Z = 0 is also a 

solution of Eq.(2.5), and hence the function U(g) found from formula (2.3) is a solution of 
Eq.(2.1). 

Multiplying (2.6) by Rc’ and integrating the resulting expression with respect to E. we 
arrive at the equation 

R,‘“+ RV5 -t_ AR” - 5 (1 -' AZ) R - 10013 = 0 (2.7) 

The constant D in this equation is related to the constants q,c,,C, and A by 

D=+,,+- -g(5-d)(l-AA’)_q 

The solution of Eq.f2.7) is expressed in terms of the Jacobian elliptic function: 

R(%)=RI+(R1-R,)cnB[~l/~,sj, sz _ 4 - RI 
RI - Rs 
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where R,, R, and Rs tR, > R, 2 R,) axe the real roots of the cubic equation 

R3i_ 15AR2 - 75 (1 - As) R - SD = 0 

If A=--% the solution (2.8) becomes a solitary wave: 

R(E) = 15 (1 - thz(~~2)) (2.9) 

Substituting (2.8) into (2.31, we find a solution of Eq.(2.1) in the form of a periodic 
(cnoidal) wave,which becomes a solitary wave if A = --1. These solutions are identical with 
the results of a numerical simulation of wavestructures described by Eq.(2.1)*. (*Afekseyev 
A.A. and Kudryashov N.A., Numerical modelling of a selforganization process in dissipative- 
dispersive mdedia with instability. Preprint 027-88, Moskov. Inzhenerno-Fizicheskii Inst., 
Moscow, 1988.). Using transformations (2.2)‘ one can also find other exact solutions of Eq. 
(2.1). 

3. The ~~~ e~~~o~. magneto-acoustic waves in plasma 112/, long waves in liquid 
under an ice cap /13/, coupled states of two solitons 1141, etc. are described by the non-linear 
equation 

This equation also has a Backlund-type transformation of the solutions: 

using which one can find a solution of the Kawahara Eq.13.1) in the travelling-wave coordinate 
system. Substituting 

u (x, t) = u (%), E = x - c,t (3.2) 

U (g) = C, + RI13 - R”, X = 280da In 8%~” 

into the equation 
u&t - U,,l - vp + &,U - q == 0 

we see that it will have a solution (3.2) if 

R,," -+- JR%40 - (A + 1/13)R -R == 0 

R=~(~~-C~)-~~A+~~-~, A==const 

This implies the equation 

Rl'= + R%‘O - (A -& 1113) R= - 2BR - 28D18 = 0 

where the constant D is related to A, cot C, and B by 

If RI, R, , and R3 (R, > R, > Rd are the real roots of the cubic @CJU~~~OSI 

R3-71)~Ai_~)R2-IliO(RR-i-~)TO 

then the solution of Eq.f3.4) is represented by formula (2.8) provided that 

If A = R = D z C, = 9 L= 0, e, = 36/1@, we deduce from (3.4) that 

(3.3) 

(3.4) 

(3.5) 

Substituting (3.5) into (3.21, we find a solitary wave solution of the Kawahara equation: 
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U(t) = g ch-'@/'l/z) 

Other values of the constants yield solutions of the Kawahara equation in the form of 
periodic waves. 
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NON-AXISYMMETRIC BUCKLING OF SHALLOW SPHERICAL SHELLS* 

I.M. BERMUS and L.S. SRUBSHCHIK 

The buckling of elastic shallow orthotropic spherical shells subjected 
to a transverse load is investigated on the basis of geometrically 
non-linear equilibrium equations in a non-axisymmetric formulation. By 
using the method of finite differences and a continuation procedure in 
the prameters in combination with a Newton operator method an algorithm 
is constructed to determine the state of shell stress and strain in the 
pre- and post-critical stages. 

The upper critical loads (CL) of spherical shells are determined 
for different external pressure distribution laws taking perturbing 
factors such as initial harmonic and azimuthal imperfection directions 
in the shape of the shell middle surface and analogous load deviations 


